ГЕКСАГОНАЛЬНАЯ СВЕРХРЕШЁТКА НА ПИРОЛИТИЧЕСКОМ ГРАФИТЕ – ПЕРСПЕКТИВНАЯ МЕРА ДЛИНЫ НАНОМЕТРОВОГО ДИАПАЗОНА

Р. В. Лапшин

НИИ Физических проблем им. Ф. В. Лукина, Зеленоград

Московский институт электронной техники, Зеленоград

Появление на поверхности высокоориентированного пиролитического графита (ВОПГ) гексагональных сверхструктур (ГСС, см. Рис. 1) хотя и достаточно редко возникающий, но уже довольно хорошо изученный феномен [1]. Характерной чертой ГСС является постоянная "решётки" d, величина превосходить которой может В десятки И сотни раз постоянную кристаллической решётки пирографита a=2.46 Å, обычно наблюдаемую в сканирующий туннельный микроскоп (СТМ). ГСС также часто называют гексагональными сверхрешётками (ГСР). В настоящем докладе предлагается использовать ГСС на ВОПГ, а также сверхструктуры на других слоистых материалах с похожей организацией, как меры длины нанометрового лиапазона.

Качественно природа наблюдаемого феномена объясняется явлением муара [1]. Муаровая картина возникает на поверхности графита (см. Рис. 2) в

Рис. 1. СТМ-изображение ГСС на поверхности пирографита. На вставке справа дан фурье-спектр сверхструктуры.

Рис. 2. Возникновение

гексагональной муаровой картины с периодом d=1.5 нм при повороте одного слоя графита/графена относительно другого на угол $\theta=9.6^{\circ}$.

результате поворота на небольшой угол θ вокруг вертикальной оси верхнего слоя атомов относительно остального тела кристалла. Задавая разные углы поворота θ , можно получать ГСС с разными постоянными решётки d согласно простой формулы $d=a/[2\sin(\theta/2)]$ [1]. Таким образом, возможно создание двумерных гексагональных сверхструктур с периодами d от 1 нм до 100 нм при повороте верхней графеновой плоскости на углы θ от 14° до 0.14°, соответственно.

Преимущества предлагаемой меры длины состоят в следующем:

(1) Простой механизм образования двумерной периодической структуры;

(2) Непосредственная привязка периода ГСР к природному эталону – постоянной решётки *а* графита;

(3) Возможность получения ГСР с периодом от 1 нм до 100 нм и, соответственно, охвата всего нанометрового диапазон калибруемых размеров/перемещений;

(4) Независимый контроль постоянной решётки d ГСР по постоянной решётки a слоёв графита, образующих ГСР, и по углу θ поворота этих слоёв относительно друг друга (или по углу $\phi=\pm\theta/2$ поворота сверхструктуры относительно нижнего/верхнего слоя графита);

34

Рис. 3. СТМ-изображение ГСС, полученное (а) методом ООС в режиме высокого разрешения; (б) обычным сканированием.

(5) Высокий контраст СТМ-изображения ГСР (более 2 нм, см. Рис. 3);

(6) Продолжительное стабильное воспроизведение эталона на воздухе при комнатной температуре.

На данный момент применение предлагаемого эталона ограничено по двум причинам: отсутствует способ изготовления ГСС [1], получаемые на СТМ изображения сверхрешётки сильно искажены. Искажения вызваны тепловыми дрейфами головки микроскопа и ползучестью манипуляторов пьезосканера [2]. Кроме того, заметный вклад в общую погрешность измерения вносят систематические погрешности, связанные с нелинейной характеристикой манипуляторов и паразитными взаимными связями между ними [3]. В представленном докладе показано, что вторая из указанных причин может быть успешно устранена при применении метода особенность-ориентированного сканирования (ООС) [2].

На Рис. За показан результат ООС в режиме высокого разрешения небольшого участка поверхности ГСС. На Рис. Зб для сравнения приведёно

35

СТМ-изображения того же участка, полученное обычным сканированием. Представленные на Рис. 3 измерения ГСС выполнены на СТМ Солвер[™] Р4 (НТ-МДТ, Россия) на воздухе при комнатной температуре.

Применение ООС позволило точно определить линейные и угловые параметры решётки сверхструктуры. В частности, период сверхструктуры после нелинейной коррекции изображения по калибровочной базе данных (КБД) сканера [3] составил 9.81±0.05 нм.

Работа выполнена при поддержке РФФИ (грант 14-08-00001) и Министерства образования и науки РФ (контракты 14.429.11.0002, 14.430.12.0004).

[1] W.-T. Pong, C. Durkan, A review and outlook for an anomaly of scanning tunnelling microscopy (STM): superlattices on graphite, Journal of Physics D: Applied Physics, vol. 38, pp. R329-R355, 2005.

[2] R. V. Lapshin, Feature-oriented scanning methodology for probe microscopy and nanotechnology, Nanotechnology, vol. 15, pp. 1135-1151, 2004 (www.niifp.ru/staff/lapshin/).

[3] Р. В. Лапшин, Распределённая калибровка сканера зондового микроскопа в нанометровом диапазоне, РЭМ-2011, Черноголовка, стр. 94, 2011 (www.niifp.ru/staff/lapshin/).